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d Therapeutic ultrasound applications include ablation, blood brain
barrier opening, and drug delivery.

d B-mode ultrasound 1s used typically for image guidance and
monitoring of therapy.

Jd  When the therapy transducer is on, streak artifacts are produced in
images because of interference between therapy and imaging fields.
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J Itis adenoising U-Net architecture
‘ d The model takes three inputs: a noisy image, a mask and a
conditioning signal (mostly text).

wemomenir ) O It processes a latent space and a text-based prompt as inputs,

Insonating a  wall-less denoising the image via a diffusion process.
) B ﬁ' 5 | polyvinyl alcohol d The conditioning signal provides additional information to guide the

........ — L i phantom perfused with denoising process.
LD = S Rt vl perfluorohexane  droplets A Skip connections in U-Net link encoder and decoder layers, preserve
N erscnics) | [ N g i at 5 x 10° droplets/ml fine details 1n the image during the denoising process.
T —_ undergoing phase Jd We used text prompts like “blend” to achieve the best inpainting
transition. results when a mask was given.
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Model trained by artificially introducing streaks into 20 streak-free ultrasound images
and obtained 1638 images.

U-Net Architecture for Segmentation
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Our results demonstrate the ability of our model to remove
streak artifacts while preserving contrast from microbubbles.
We see an increase 1n the Signal-to-Noise ratio by 6.0 + 3.4 dB
(n=154 frames)

The model's rapid convergence underscores its potential for

real-time clinical application.
We reported an 10U score of 0.698.
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U-Net Architecture [1]
et Architecture Summary and Future Work

Jd The UNet is a neural network based on an Encoder-Decoder
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d  We integrated U-Net with diffusion models which provides a
potential solution for streak artifact removal 1n therapeutic
ultrasound 1maging.

structure.

d The encoder (contracting path) extracts high-level features, while
the decoder (expanding path) reconstructs segmentation maps.

d  Suitable for biomedical images with limited training data. d Future work will focus on validating the model with more

extensive and diverse datasets and reducing inference times.
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